
782 

18.4 Case studies of highly available services: 

The gossip architecture, Bayou and Coda 

In this section, we consider how to apply replication techniques to make services highly 

available. Our emphasis now is on giving clients access to the service - with reasonable 

response times - for as much of the time as possible, even if some results do not conform 

to sequential consistency. For example, the user on the train described at the beginning 

of this chapter may be willing to cope with temporary inconsistencies between copies of 

data such as diaries if they can continue to work while disconnected and fix any 

problems later. 

In Section 18.3, we saw that fault-tolerant systems transmit updates to the replica 

managers in an 'eager' fashion: all correct replica managers receive the updates as soon 

Credit: Distributed Systems: Concepts and Design, 5th Edition
George Coulouris, Cambridge University
Jean Dollimore, Formerly of Queen Mary, University of London
Tim Kindberg, matter 2 media
Gordon Blair, Lancaster University
©2012 | Pearson 







SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 785 

In terms of our basic replication model, an outline of how a gossip service 

processes queries and update operations is as follows: 

l. Request: The front end normally sends requests to only a single replica manager

at a time. However, a front end will communicate with a different replica manager

when the one it normally uses fails or becomes unreachable, and it may try one or

more others if the normal manager is heavily loaded. Front ends, and thus clients,

may be blocked on query operations. The default arrangement for update operations,

on the other hand, is to return to the client as soon as the operation has been passed

to the front end; the front end then propagates the operation in the background.

Alternatively, for increased reliability, clients may be prevented from continuing

until the update has been delivered to f + l replica managers, ensuring that it will be

delivered everywhere despite up to f failures.

2. Update response: If the request is an update, then the replica manager replies as

soon as it has received the update.

3. Coordination: The replica manager that receives a request does not process it until

it can apply the request according to the required ordering constraints. This may

involve receiving updates from other replica managers, in gossip messages. No other

coordination between replica managers is involved.

4. Execution: The replica manager executes the request.

5. Query response: If the request is a query, then the replica manager replies at this

point.

6. Agreement: The replica managers update one another by exchanging gossip

messages, which contain the most recent updates they have received. They are said

to update one another in a lazy fashion, in that gossip messages may be exchanged

only occasionally, after several updates have been collected, or when a replica

manager finds out that it is missing an update sent to one of its peers that it needs to

process a request.

We now describe the gossip system in more detail. We begin by considering the 

timestamps and data structures that front ends and replica managers maintain in order to 

maintain update ordering guarantees. Then, in terms of these, we explain how replica 

managers process queries and updates. Much of the processing of vector timestamps 

needed to maintain causal updates is similar to the causal multicast algorithm of Section 

15.4.3. 




